IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 31, NO. 5, SEPTEMBER/OCTOBER 2025

3801509

Modeling-Based Optimization of a Single-Photon
Avalanche Diode: Towards Integrated Quantum
Photonics Devices Operating at Room-Temperature

Eo-Jin Kim *“, Hyun-Seung Choi

, Graduate Student Member, IEEE, Doyoon Eom, Joo-Hyun Kim, Ping Zheng *“,

Eng-Huat Toh, Member, IEEE, Elgin Quek ", Member, IEEE, Deepthi Kandasamy, Yew Tuck Chow,

Woo-Young Choi

Abstract—Single-photon avalanche diodes (SPADs) are emerg-
ing as a cost-effective and practical alternative to superconducting
nanowire single-photon detectors (SNSPDs), especially for inte-
grated quantum photonics. While SNSPDs exhibit excellent per-
formance such as fast response time and high detection efficiency,
their reliance on a cryogenic cooling system results in high cost
and power consumption as well as limited suitability for portable
devices. In contrast, SPADs can operate at room temperature,
eliminating the need for a bulky cooling system and significantly
reducing the overall cost. Compared to SNSPDs, however, further
optimization of SPAD performance is highly required. In this paper,
the SPAD guard-ring (GR) structure is optimized with accurate
SPAD device modeling and TCAD simulation, aiming to enhance
their suitability for integrated quantum photonics applications. It
is demonstrated that the GR-optimized SPAD can reduce internal
series resistance and extend its avalanche multiplication region.
As a result, the avalanche multiplication region is expanded by
approximately 20% , and the peak photon detection probability at
a wavelength of 425 nm is increased by 48 % . This improvement is
achieved while maintaining a low dark count rate of 3.9 cps/pm?
at an excess bias voltage of 3 V. Additionally, the reduced series
resistance enables an increase in current gain and a faster slew
rate, which results in much lower timing jitter.
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I. INTRODUCTION

SINGLE-PHOTON avalanche diode (SPAD) operates un-
der the Geiger mode by applying a reverse bias voltage
exceeding its breakdown voltage (Vpp). When a photon enters
the device, it generates an electron-hole pair, which can trigger
avalanche multiplication through impact ionization. Due to its
high sensitivity and the unique feature in that each photon results
in a single digital pulse output, SPADs have been widely used in
various optical distance measurement systems [1], [2], [3], [4],
[5], [6], [7]. A key advantage of SPADs is their ability to operate
atroom temperature [8], [9], and thanks to this, SPADs can over-
come the limitations of superconducting nanowire single-photon
detectors (SNSPDs) [10], which require a cryogenic cooling
system, restricting their applications and leading to significant
power consumption [11], [12], [13], [14], [15], [16], [17], [18].
Additionally, CMOS-based SPADs offer notable advantages
in terms of cost-effectiveness and compatibility with existing
integrated circuits. Leveraging these benefits, recent research
on SPAD-based integrated quantum photonics has gained con-
siderable attention [19]. Na et al. [20] demonstrated that SPADs
with an optimized structure can facilitate efficient integration
with photonic circuits. Moreover, Zeng et al. [21] highlighted the
potential of room-temperature SPADs in quantum key distribu-
tion systems, emphasizing their advantages in reducing system
complexity. However, compared to SNSPDs, SPADs still require
further improvements in timing jitter and detection efficiency.
In this paper, an equivalent circuit model for the SPAD is im-
plemented through S-parameter measurement. With a ground-
signal-ground (GSG) pad [22], [23], we can calibrate out the
errors and losses in the measurement system and also remove the
parasitic components of the device under test (DUT). Modeling
results show that the conventional P+ and N-well (NW) junction
SPADs with a high-voltage P-well (HVPW) guard ring (GR),
increase internal series resistance mainly by elongating the
current path, reducing current gain and consequently requiring
higher resistance for quenching. This negatively affects the
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dead time and timing jitter of the device. GR optimization
is performed to reduce the high series resistance induced by
the HVPW-GR and also expand the avalanche multiplication
region into the GR area, thereby achieving a higher photon
detection probability (PDP). To achieve this, the HVPW-GR is
replaced by a virtual GR that leverages the retrograded doping
of the deep NW (DNW) while maintaining the GR spacing.
This enables the p-type epitaxial (P-EPI) layer to function as
a GR without requiring a separate physical layer. The model’s
parameters of the GR-optimized SPAD are compared with those
of the HVPW-GR SPAD, demonstrating a reduction in series
resistance. Furthermore, the junction capacitance increases, con-
firming the expansion of the avalanche multiplication region
to meet optimization goals. TCAD simulation using Sentaurus
TCAD is employed for parameter extraction and comparison
of electric-field (E-field) profiles, with performance improve-
ments validated by measuring SPAD characteristics such as
current-voltage (I-V) characteristics, light emission test (LET),
dark count rate (DCR), PDP, and timing jitter. As a result, the
avalanche multiplication region shows about 20% expansion,
as identified in the LET results, modeling analysis, and E-field
profiles obtained from TCAD simulation. This enlargement
leads to an improved fill factor, increasing from 51% to 73%
, and a remarkable enhancement in PDP at 425 nm, rising
from 34.13% to 50.63% —a 48% improvement compared to the
HVPW-GR SPAD. DCR levels, including afterpulses, remain
low, 3.9 cps/um? at the same excess bias voltage (Vgx) of 3
V in the GR-optimized SPAD. Timing jitter is measured at a
wavelength of 510 nm, near the device’s peak PDP, under Vgx
of 3V, and the full width at half maximum (FWHM) of the
timing jitter is dramatically improved by about 3.9 times from
224 to 57 ps.

This paper proceeds as follows: Section Il discusses the SPAD
modeling work conducted to optimize the GR structure. Addi-
tionally, acomparison of E-field profiles between the HVPW-GR
SPAD and the GR-optimized SPAD using TCAD simulations
is provided. Section III presents the experimental results that
validate the modeling analysis. Finally, Section IV concludes
the study.

II. DEVICE STRUCTURE AND MODELING ANALYSIS
A. Device Structure and Its Equivalent Circuit Model

When a reverse bias voltage exceeding Vpp is applied to a
SPAD, a photon-generated carrier can trigger an avalanche mul-
tiplication through impact ionization. Avalanche multiplication
creates a substantial amount of electron-hole pairs. Assuming
that generated carriers travel at saturation velocity, they induce
changes in the E-field, resulting in voltage variations. The rela-
tionship between the voltage change caused by the carriers in
the avalanche multiplication region and the space-charge limited
current due to carrier motion with saturation velocity allows for
modeling a space-charge resistance, Rspap [24]. Rgpap is the
resistance along the path of avalanche current, directly related
to current gain, and is a key parameter that defines avalanche
multiplication. Additionally, the series resistance in SPADs can
lead to voltage drops, further decreasing current gain, and the
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Fig.1. Device structure and equivalent circuit model of the HWPW-GR SPAD.

junction capacitance is proportional to the multiplication region
so that it can represent the area of the multiplication region.
An equivalent circuit model can be built with these device
parameters, enabling a deep analysis of SPAD characteristics.

To eliminate the parasitic effects of the pads and isolate the
SPAD’s intrinsic properties, a GSG pad was designed. The
impedance characteristics of the SPAD, including the GSG
pad, were extracted from S-parameter measurements. The pad’s
S-parameters were measured separately to remove the pad’s
influence. For accurate analysis of capacitance and other com-
ponents, measurements were made up to 20 GHz using a vector
network analyzer (VNA).

Fig. 1 shows the model of a P+/N-well junction SPAD
with HVPW-GR, fabricated in a 55 nm bipolar-CMOS-DMOS
(BCD) technology. The active area was designed with a diameter
of 13.5 pm, while the GR size was set to 1.8 pm. In this model,
Rg represents the series resistance, Cy is the junction capaci-
tance, and Rgpap is the space-charge resistance. Ry, represents
the leakage resistance in the depletion region, which is large
enough to make leakage negligible in SPAD. Cgyp denotes the
parasitic capacitance between the deep N-well and the substrate,
while Cp1, Cps, and Rp; model the parasitic components due to
the pad’s bottom metal layer and leakage between the pad and
substrate. Rp; includes the parasitic components from the slit in
the shield metal.

B. Parameter Extraction

The parameter values for each model were first calculated
using known equations and then fine-tuned through the Ad-
vanced Design System (ADS). The values of Cj and Rspap
were calculated using the following equations [24]:

(Wp — xa)”

= — = 1
2Ae v M

e A
Wp

C; = , Rspap

Wp is the width of the depletion region, A is the cross-
sectional area of the junction, x 4 is the avalanche width, e
is the material permittivity, and v, is the carrier saturation
velocity. The values for Wp and x4 were obtained through
TCAD simulations.

Previous modeling works on avalanche photodiodes (APDs)
have reported that the values of Cj and Rg do not change
significantly beyond the breakdown voltage Vg p under different
bias conditions [25]. Rspap, on the other hand, represents the
resistance associated with avalanche multiplication occurring
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Fig. 2. Equivalent circuit model with 7 network assumption at Vgp.

TABLE I
COMPARISON OF EXTRACTED DEVICE PARAMETERS OF HVPW-GR SPAD AND
P-EPI-GR SPAD AT Vgx =3V

ZpAD HVPW-GR P-EPI-GR
SPAD SPAD
Cp1 45 {F Rspap 130 Q Rspap 108 Q
Cr2 225 {fF Rs 1.9 kQ Rs 350 Q
Rr1 110 Q Cy 28 fF Cy 33.6 fF
Csus 6 fF Csus 6 fF

under Vpp+Vgx conditions. Therefore, the parameter extrac-
tion was first carried out at Vg p, excluding Rgpap, followed by
the extraction of Rgpap at Vgx of 3 V by fitting the measurement
data without any other parameter changes.

Assuming a m network model for the SPAD equivalent circuit
at Vpp, as shown in Fig. 2, the Y3 part can be calculated as
—Y12. Using the following equations, Rg corresponds to the
real part of Y5, and Cjy is dominated by the imaginary part of
Y2, allowing for fine-tuning.

1 1
jwC' — =~ jwCy, Yo =~ jwC — 2
JwCy + i JwCy, Y12 JwCi || Rs 2)
jwRsCy w2R50J2 +ijSQCJ
Y12 ~ . - 2 2 2 (3)
Rs + jwCy Rs” +w?Cy
20 2
LYo m S 4 juCy (RS> W02 @)

S

C. Modeling Results

The HVPW-GR SPAD modeling results shown in Table I
reveal that, as the current path increases, the series resistance
also increases. When the series resistance increases, the current
gain decreases, requiring a larger quenching resistance, which
increases dead time. For faster photon detection, it is advanta-
geous to use a smaller quenching resistance. GR optimization
was conducted to reduce the series resistance. The use of the
P-EPI-GR as shown in Fig. 3 not only reduces the current path
but also extends the multiplication region as it is not blocked
by the physical GR. This was aimed at increasing the PDP for
high detection efficiency. The region labeled as the ‘simulation
region’ in Fig. 3 was simulated using TCAD in Figs. 5 and 6
to verify this. The designed SPAD with the P-EPI-GR was also
modeled to extract device parameters. In Fig. 4, the simulated
S92 and output impedance characteristics of the HVPW-GR
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Fig. 3. Device structure of the (a) HVPW-GR SPAD and (b) GR-optimized
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Fig. 4. Measured vs. simulated output impedance characteristics at Vgx = 3

V for the HVPW-GR SPAD and P-EPI-GR SPAD.
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Fig. 5. TCAD simulation results at Vgx = 3 V: electric-field distribution of

the (a) HVPW-GR SPAD and (b) P-EPI-GR SPAD.
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Fig.6. 3D electric-field profiles above the critical electric field of 3x 10° V/cm
for the HVPW-GR SPAD and P-EPI-GR SPAD at Vgx =3 V.

SPAD and P-EPI-GR SPAD, based on their equivalent circuit
models, are compared with the measured Sso. The results show
a strong agreement between the simulation and measured data,
demonstrating the accuracy of the modeling. The device param-
eters’ values are compared in Table I.

From the device parameter values, it is found that in the
GR-optimized SPAD, Rg decreased by approximately 5.4 times,
Rgpap decreased by 1.2 times, and Cj increased by 1.2 times.
Due to the lowered resistance in the P-EPI-GR SPAD, the
impedance characteristics appear closer to the origin on the
Smith chart, indicating a reduced impedance as shown in Fig. 4.
According to (1), Rspap is inversely proportional to the cross-
sectional area of the active area, A, while Cj is directly pro-
portional to it. Thus, the 1.2 times difference in Rgpap and Cy
compared to the conventional HVPW-GR SPAD indicates that
the avalanche multiplication region expanded by 1.2 times into
the designed GR area. Furthermore, the 5.4 times reduction in
Rg signifies a significantly shortened current path, suggesting
that the current gain may have increased to a similar extent.
Modeling results show that the original optimization design
goals are successfully achieved.

D. TCAD Simulation Analysis

TCAD simulations were employed to extract SPAD model
parameters and compare the E-field profiles of the conventional
HVPW-GR SPAD and the optimized P-EPI-GR SPAD. Fig. 5
provides a magnified view of the E-field profile in the part
of junction and GR region in the SPADs. In the P-EPI-GR
structure, the avalanche multiplication region extends into the
GR area since no physical layer obstructs the junction, as shown
in Fig. 5(b). This expansion aligns with the trends observed in
the modeling results. Additionally, the simulation shows that
premature edge breakdown (PEB) is effectively prevented in
both SPADs.

As a higher reverse bias voltage is applied to the SPAD, the E-
field across the depletion region strengthens, causing externally
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Fig. 7. 1-V characteristics comparison between the HVPW-GR SPAD and
P-EPI-GR SPAD at room temperature.

injected carriers to move with greater force. When the applied
voltage reaches a sufficient level, the E-field strength becomes
large enough to reach a threshold of 3x10° V/cm, known as
the critical E-field, where carriers collide, triggering avalanche
multiplication via impact ionization. Fig. 6 shows the TCAD
simulation results depicting the 3D profile of regions where the
E-field exceeds the critical E-field threshold. This corresponds to
the avalanche multiplication region, which has an approximate
thickness of 0.3 pm. In the HVPW-GR SPAD, the E-field profile
in the GR region does not exceed the critical E-field, as shown in
Figs. 5 and 6. The carrier movement in Fig. 5 indicates that the
junction is completely blocked. Additionally, a shorter carrier
movement path is observed in the P-EPI-GR SPAD. The E-field
distribution comparison and carrier movement in the TCAD
simulation results align with the modeling results, specifically
showing a reduction in Rgpap and Rg, along with an increase
in C J-

III. EXPERIMENTAL RESULTS
A. Current-Voltage (I-V) Characteristics

The I-V characteristics were measured by accumulating the
output current from the SPAD’s anode at each reverse bias
voltage over a fixed period under dark and low light conditions.
The current flowing in the absence of light is referred to as the
dark current, while the current measured under illumination is
defined as the sum of dark current and photocurrent. Ideally,
when avalanche multiplication occurs, the current would rise
infinitely. However, due to space-charge resistance, Rspap,
the current saturates at a certain level [24]. Using these I-V
characteristics, we compared the Vpp and current gain of a
conventional HVPW-GR SPAD with a GR-optimized SPAD.
Both SPADs have the same P+/N-well junction, resulting in the
same Vpp of approximately 16 V and identical dark current
characteristics up to a reverse bias voltage of about 7 V, as shown
in Fig. 7. In the case of the HVPW-GR SPAD, defects induced by
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Fig. 8. LET results at room temperature under Vgx = 1 V and 3 V for the

HVPW-GR SPAD and P-EPI-GR SPAD.

the high-energy implantation process make it more susceptible
to lateral leakage, leading to an increase in dark current beyond
this voltage. In contrast, the optimized P-EPI-GR SPAD exhibits
areduced dark current since it eliminates the need for a separate
GR formation process. However, this lateral leakage does not
contribute to the DCR as it does not flow through the avalanche
junction.

While Rgpap predominantly affects the saturation current
gain as it is the path of avalanche current, series resistance
contributes to the voltage drop, thereby affecting the gain as
well. As demonstrated in the modeling results in Section II, the
P-EPI-GR SPAD exhibits higher current gain due to its lower
series resistance, which results from a shorter current path and a
reduced Rgpap caused by the expanded multiplication region.

B. Light Emission Test (LET)

LET allows for the observation of the light emission area in
real time. The SPAD device is placed inside a dark box, and
probes are positioned on the cathode and anode pads to apply
a reversed bias voltage. When the applied voltage exceeds the
Vb, avalanche multiplication occurs, generating electron-hole
pairs (EHPs). As some of the EHPs are recombined, light is
emitted in the visible or near-infrared wavelength range. This
emitted light is detected using a high-sensitivity image sensor
or camera. To compare the avalanche multiplication regions of
the two SPADs by examining the width of the light emitting
areas, LETs were conducted at Vgx of 1 V and 3 V, confirming
that a stronger E-field formed as Vgx increased to 3 V, leading
to uniform avalanche activity across the active area. As shown in
Fig. 8, despite P-EPI-GR not being as physical as HVPW-GR,
well-optimized P-EPI-GR effectively prevented PEB, as no light
emission was observed near the edges.

Additionally, using the P-EPI-GR allowed carriers generated
by avalanche multiplication to extend into the GR area, resulting
in a light-emitting area approximately 1.2 times larger than
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Fig.9. DCR comparison between the HVPW-GR SPAD and P-EPI-GR SPAD
at Vgx ranging from 0.5 to 3 V at room temperature.

the HVPW-GR SPAD. This matches well with the modeling
results, which showed 1.2 times increase in Cj, indicating a
wider avalanche multiplication region.

C. Dark Count Rate (DCR)

DCR represents the false output signal generated without light
as if a photon had been detected. DCR can arise from various
sources, primarily from carriers generated in the avalanche
junction due to thermal noise, band-to-band tunneling, or trap-
assisted tunneling (TAT). A high DCR can make the distinction
between actual photon events and noises difficult.

It also impacts PDP measurements and increases power con-
sumption. The DCR for both the HVPW-GR and P-EPI-GR
SPAD was characterized by measuring under room temperature
conditions, with Vgx ranging from 0.5 Vto 3 Vin 0.5 V
increments. Considering die variation, DCR measurements were
conducted on five different dies per device, and the average
values were plotted as markers in Fig. 9. Although the P-EPI-GR
SPAD showed a slight increase in DCR due to its proportional
relationship with the active area’s cross-sectional size, and in-
creased current gain, it remained low at 3.9 cps/pum?. The P-EPI-
GR SPAD exhibits slightly higher DCR than the proportional
rate due to the multiplication region extending deeper into the
GR area, but the difference is not significant. The dashed trend
lines in Fig. 9 demonstrate that both devices exhibit a similar
trend of increasing DCR with higher excess bias voltage, as
their device structures are identical except for the GR structure.

Afterpulses, another noise component in SPADs, occur when
photon-generated carriers are trapped within the device’s defect
and released after a short period, causing a false avalanche
event. Since afterpulses occur shortly after a previous avalanche
event, afterpulsing probability is determined by histogramming
the time intervals between avalanche events. Events occurring
at longer time intervals are unlikely to be afterpulses. This
longer period, such as 15-20 us, is used as a reference, and
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measured at Vpx =3 V.

an exponential curve is fitted to the distribution. Any counts
exceeding this exponential fit in the short time period are con-
sidered afterpulses, and the ratio of these counts to the total
count is defined as the afterpulsing probability. In Fig. 10,
the afterpulsing probability was measured at Vgx of 3 V in
room temperature conditions, with a dead time of 2 us for the
HVPW-GR SPAD and 1.5 ps for the P-EPI-GR SPAD. The
results confirmed that both the HVPW-GR SPAD and P-EPI-GR
SPAD exhibit no significant afterpulsing up to their respective
dead times.

Fig. 11 illustrates the trend of DCR variation with temperature
for both SPADs. Measurements were conducted ata Vgx of 3V,
ranging from 20 °C to 80 °C in 20 °C intervals, and an Arrhenius
plot was used to extract the activation energy (E,). As with the

— 17.2
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N
o

Breakdown Voltage [V
>
S

T

—&@)— HVPW-GR
—A\— P.EPI-GR

20 40 60 80
Temperature [°C]

Fig. 12.  Measured Vpgp variation with temperature of the HVPW-GR SPAD
and P-EPI-GR SPAD.

DCR measurements at room temperature, as shown in Fig. 9,
the P-EPI-GR SPAD exhibited a slightly higher DCR, but the
difference between the two devices was minimal. Moreover, the
DCR variation trend with temperature was nearly identical for
both SPADs. The activation energy values were 0.535 eV for the
HVPW-GR SPAD and 0.522 eV for the GR-optimized SPAD,
suggesting that the dominant DCR sources are the same—Ilikely
stemming from TAT processes.

Fig. 12 depicts the variation in Vpp with temperature for
both SPADs, measured across a range of 20°C to 80°C. The
HVPW-GR SPAD consistently exhibited a Vpp approximately
0.1 V higher than the P-EPI-GR SPAD throughout the tem-
perature range. However, this difference is within the margin
of die variation and can be considered negligible. Both SPADs
showed the same trend in Vpp variation with temperature, with
a temperature coefficient of 15 mV/K. This indicates that both
devices operate stably at room temperature and are minimally
affected by temperature changes, ensuring reliability even when
integrated into portable applications for outdoor environments
in integrated quantum photonics.

D. Photon Detection Probability (PDP)

PDP is one of the most critical characteristics determining the
performance of a system when SPADs are used as detectors in
various applications, including the quantum applications men-
tioned above. Due to the inherent properties of Si-based SPADs,
they exhibit high PDP in the visible spectrum. Figs. 13 and 14
show the PDP results measured at room temperature for both
the HVPW-GR SPAD and P-EPI-GR SPAD, with Vgx ranging
from 1 Vto3 Vin 1 Vincrements and wavelengths from 400 nm
to 950 nm in 25 nm intervals. Both SPADs exhibit the highest
PDP peak at 425 nm in the green light spectrum. This peak
is attributed to the significant doping concentration difference
in the P+/N-well junction, which creates a strong E-field in a
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thin layer. Consequently, many photon-generated carriers pro-
duced by shorter wavelengths can easily reach the avalanche
multiplication region. In Fig. 13, the HVPW-GR SPAD shows
a PDP peak of 34.13% at a Vgx of 3 V at 425 nm. The
optimized P-EPI-GR SPAD demonstrates a peak of 50.63% at
the same wavelength and voltage, representing an improvement
of approximately 48% over the conventional HVPW-GR SPAD,
as shown in Fig. 14. This improvement is due to the extension
of the avalanche multiplication region, as well as the expanded
carrier collection region at the periphery, which allows for the
absorption of more carriers. Both SPADs have a similar trend of
relatively lower PDP at higher wavelengths due to the shallow
formation of the junction with a strong E-field.
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Fig. 15.  Measured slew rate vs. timing jitter at 510 nm wavelength and device
resistance of the HVPW-GR SPAD and P-EPI-GR SPAD at Vgx = 3 V at room
temperature.

E. Timing Jitter

Along with PDP, timing jitter is one of the critical charac-
teristics for achieving fast response speed in integrated quan-
tum photonics. Timing jitter was measured at a wavelength of
510 nm, close to the peak PDP, under room temperature and
a bias condition of Vgx of 3 V. According to [26], the root-
mean-square (RMS) timing jitter is inversely proportional to the
slew rate measured at 50% of the pulse’s amplitude. A slower
slew rate makes the signal more susceptible to distortion from
small time variations, increasing the timing jitter. Since RMS
timing jitter assumes a Gaussian distribution of the measurement
results, it can be expressed as the standard deviation, equivalent
to the FWHM divided by a factor of 2v/2(n2. In [27], the
SPAD’s quenching time constant is determined by the following
equation.

S Tg %(CD—FCL)XRD 5)

Based on the modeling results, the device resistance Rp can be
simplified to Rg + Rspap, while the device capacitance Cp adds
to the load capacitance Cr,. Consequently, Rp predominantly af-
fects the quenching time constant. Since this is directly related to
the slew rate, a larger Rp results in a slower slew rate, increasing
timing jitter and leading to slower response characteristics.

Fig. 15 illustrates the relationship between device resistance
extracted from modeling results, timing jitter, and slew rate
measurements. The GR optimization in the P-EPI-GR SPAD
significantly reduced Rp, and a similar proportional improve-
ment in timing jitter was observed. The slew rate increased from
27 MV/s to 104 MV/s, approximately a 3.85-fold improvement,
while the timing jitter based on FWHM decreased from 224 to
57 ps, showing a 3.92-fold reduction. This inverse relationship
between slew rate and timing jitter is clearly demonstrated.
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IV. CONCLUSION

In this study, the SPAD is optimized for integrated quan-
tum photonics, targeting enhanced detection efficiency and fast
response characteristics. The optimization focused on the GR
structure, aiming to reduce series resistance, Rg and enlarge
the multiplication region, based on an equivalent circuit model
that accurately reflects the SPAD’s impedance characteristics.
TCAD simulations are employed to extract device parameters
for the model and to compare the E-field profiles. Experimental
results are consistent with the modeling results. Specifically,
the reduction in Rg in the optimized P-EPI-GR SPAD model
demonstrates the decrease of internal series resistance, leading to
an increased current gain and faster slew rate, which contributed
to reduced timing jitter. The increased Cj is also associated
with the expanded emission region of LET, leading to improved
PDP. However, this also causes a slight increase in DCR, which
remains at an acceptably low level. These results confirm the
success of the modeling-based optimization, demonstrating that
the approach is effective. The proposed modeling framework
holds the potential for continuous optimization tailored to future
target applications.
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